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FROM ONE BUBBLE TO SEVERAL BUBBLES:
THE LOW-DIMENSIONAL CASE

OLIVIER DRUET

Abstract

We study in this paper sequences of solutions of elliptic PDE’s with critical
Sobolev growth on compact Riemannian manifolds. We prove some com-
pactness results for such sequences which apply in particular to sequences
of solutions of the Yamabe equation. We also underline the effect of the
dimension and the geometry of the manifold on the blow-up behaviour of
such sequences.

Let (M, g) be a smooth compact Riemannian manifold of dimension
n > 3, and H?(M) be the standard Sobolev space consisting of functions
in L?(M) whose gradient is also in L?(M). We let h be a smooth
function on M and consider equations like

(E) Agu+ hu = u* !

where A, = —div,V is the Laplace-Beltrami operator, and 2* = % is
the critical Sobolev exponent for the embedding of HZ(M) into Lebesgue’s
spaces LI(M). Such equations have been the target of investigation for
decades. They arise naturally in conformal geometry when h = C(n)S,,

C(n) = (n —2)/4(n — 1), where Sy is the scalar curvature of g. In this

case, if u is a positive solution of (E), then the conformal metric uﬁg
has constant scalar curvature. Equation (E) when h = C(n)S, is re-
ferred to as the Yamabe equation. Equations like (E) arise also naturally
in the study of sharp Sobolev inequalities. Possible surveys on the Yam-
abe equation, including the final resolution of the Yamabe problem by
Schoen [27], are [21, 28, 29]. Possible monographs on sharp Sobolev
inequalities are [9] and [18].
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We let in this paper (he).., be a sequence of smooth functions on
M verifying that there exists ho € C%(M) such that A, + hy is coercive
and such that

(0.1) lim he = ho in C%(M)

E—
and we consider (u.):>0 a sequence of smooth positive solutions of
(Ee) Ague + heue = ug*_l .

We assume that (u.) is of bounded energy in the sense that there exists
A > 0 such that

(0.2) limsup ||luc|3 < A
e—0

where, as in the sequel, ||. ||, denotes the LP-norm. Then, after passing
to a subsequence,

(0.3) lim ue = up weakly in HE(M)
£—

for some smooth nonnegative function ug, solution of the limit equation

2*—1
Aguo + houo = U .

We assume in what follows that (0.2) and (0.3) hold. Since u, is positive,
the maximum principle gives that either ug = 0 or ug > 0. If (u.) is
bounded in L*° (M), then, thanks to standard elliptic theory,

(0.4) lim vz = g in C%(M) .
E—
Throughout this paper, we assume that (0.4) is false so that
(0.5) lim ||ue||oo = +00.
e—0

Then the u.’s develop a concentration phenomenon. This concentration
phenomenon is well understood in HZ(M), thanks for instance to Struwe
[35]. Following Struwe [35], we get that, up to a subsequence,

N
(0.6) ue =ug+ » Bl+Re

i=1
where N > 1 is an integer, the B’ are bubbles obtained by rescaling
fundamental positive solutions of the critical Euclidean equation Au =
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u? !, and the R.’s are lower order terms in HZ(M), so that R. — 0 in

H?(M) as e — 0. A more precise definition of the bubbles is that

n—2

2
; Hie
BZ x) = )
(@) (N?,s + andg(z; e, x)Q)

where (z;.) is a converging sequence of points in M, and (p;.) is a
sequence of positive real numbers converging to 0 as € — 0. Here and
in all the sequel,

o
nin—2)
Moreover, the bubbles do not interact at the H?-level so that

Ay —

Jue||3e = [luol|3 + NAmin +o0(1)

where the minimum energy A, is given by Apmin = Kpn n/ 2, where

K, is the sharp constant for the Euclidean Sobolev inequality ||u|3. <
K||Vu||3. We refer to the above description as the H2-theory for blow-
up. The C%-theory, that we will use in this paper, was recently devel-
oped by Druet-Hebey-Robert [12, 13]. A special situation is when the
ue’s are of minimal energy, that is when A = Ay, in (0.2). In such a
case, thanks to the splitting of the energy in the above Struwe decom-
position, we easily get that either ug = 0 or u. — wug in C?(M). In
other words, either uy = 0 or blow-up does not occur. A first and naive
question we address in this paper is whether or not such an alternative
holds also when the bound on the energy in (0.2) is arbitrary, and, more
generally, whether or not the dimension of the manifold has something
to do with the vanishing or nonvanishing of ug. An independent natural
question when blow-up occurs is to determine the location of geometric
concentration points. When the energy of the u.’s is minimal and n > 4,
see for instance Druet-Hebey [9] and Druet-Robert [14], we can prove
that ho (T) = C(n)S, (T) where T is the geometric concentration point
of the u.’s. Another question we ask in this paper is whether or not this
continues to hold when the bound on the energy in (0.2) is arbitrary. A
positive answer to this question would provide another example of the
criticality of the Yamabe equation. At last, we address the question of
the compactness of solutions of (E.). This was first handled by Schoen
[28] in the case of the Yamabe equation. We refer also to Schoen [29, 30].

We concentrate in this paper on the low-dimensional case, where
3 < n < 5. We say that the u.’s blow-up if (0.5) holds. We let then S
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be the set of the geometric concentration points of the u.’s, defined as
the set consisiting of the limits of the z; .’s as ¢ — 0. Independently, we
say that compactness holds for the u.’s if (0.4) holds. Our main result,
which answers the above questions for low dimensions, is the following:

Theorem. Let (M,g) be a smooth compact Riemannian manifold
without boundary of dimension 3 < n < 5. Let (u:) be a sequence of
positive solutions of (Ez). We assume that (0.1), (0.2), (0.3) hold. If the
ue’s blow-up, then ug = 0, and when n = 4,5, there exists xy € S such
that ho (z0) = C(n)Sy (x0), where S is the set of geometric concentration
points, and C(n) is as above. In particular, compactness holds for the
us’s if n = 4,5 and ho (z) # C(n)Sq (z) for all x in M. Compactness
holds also for the u:’s if n = 3,4,5 and he (x) < C(n)Sy (x) for all
x in M and all e, with the additional condition that (M,g) has to be
conformally distinct to the unit n-sphere if ho(x) = C(n)Sy(z) for all x
mn M.

The compactness result of the theorem in its last part applies to the
Yamabe equation, a situation where we recover the compactness result
of Schoen [28]. In particular, if (M, g) is a compact Riemannian mani-
fold of dimension n = 3, 4, 5, conformally distinct to the unit n-sphere,

. _ 4)(n=2) \ . .
and if (ge = ue g) is a sequence of conformal metrics to g of con-
stant scalar curvature 1 and of bounded volume, then the sequence (u.)
is precompact in C2(M). Our theorem, in its last part, was proved in
dimension n = 3 by Li and Zhu [24]. The proof of our theorem relies on
the C%theory for blow-up developed in Druet-Hebey-Robert [12]. The
paper is organized as follows: in Section 1, we describe the C°-theory
developed in [12]. Section 2 is devoted to the estimate of the distance
between concentration points and Section 3 deals with the special case
of almost isolated concentration points. The analysis of the distance
between concentration points was initiated (in the context of surfaces
of constant mean curvature) by Brezis and Coron (see [4, 5, 6]). At
last, in Section 4, we prove the theorem and give some results concern-
ing higher dimensions. We also provide some instructive examples of
blowing-up sequences of solutions of Equation (E.) in this last section.

1. A C°-theory for blowing-up sequences of
solutions of elliptic PDE’s

In this section, we describe, and give some consequences of, the
pointwise version of Struwe’s result (see (0.6)) obtained in Druet-Hebey-
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Robert [12]. We first recall the result which was proved in [12]. This
result and one of its consequence (Claim 1 below) are the starting point
for the analysis of Section 2.

Theorem ([12]). Let (M,g) be a smooth compact Riemannian
manifold of dimension n > 3, (he) be a sequence of smooth functions on
M satisfying (0.1), and (u:) be a sequence of smooth positive solutions
of Equation (E.) satisfying (0.2) — (0.3). Assume that (0.5) holds, that
is that ||ue|loo — +00 ase — 0. Then there exist N € N*, N converging
sequences (x;c) of points in M and N sequences (u;c) of positive real
numbers converging to 0 such that, after passing to a subsequence,

n—2

(1 —ne) uo ( CZ( Hie 2)

117 . + andg (e, )

n—2

2

< e () < (1+17e) o ( +Cz<u +d<9«“ x)2>

for allx € M and all e where C > 1 is independent of € and x and (n.),
independent of x, is a sequence of positive real numbers converging to 0
as € — 0. In particular, the u:’s are pointwisely controled on both sides
by ug and standard bubbles.

This result has important applications when dealing with sharp
Sobolev inequalities (see the monographs [9] and [18]). Other direc-
tions of research are the study of the energy function (see [19]). The
above theorem is proved in Chapters 4 and 6 of Druet-Hebey-Robert
[12]. Many asymptotic analysis of this kind are available in the minimal
energy case: we cite among others the works of Atkinson-Peletier [2],
Brezis-Peletier [7], Robert [25, 26] in the radially symmetric case on the
Euclidean ball, the work of Han [15] when dealing with solutions u. of
Aue = u2 —1=¢ on arbitrary domains of R", the work of Hebey-Vaugon
[20] on arbitrary Riemannian manifolds with h. — 400 as ¢ — 0. In
the case of the standard sphere, we refer also to Chang-Gursky-Yang
[8], to Druet-Robert [14], to Li [22, 23] and to Schoen-Zhang [34]. One
difficulty to get pointwise estimates when there are several bubbles is
that bubbles do interact at a C%-level except in dimension n = 3 where
one can prove a priori that the concentration points are isolated.

Let us come back to the above result. We let (z;.) and (u;¢) be the
points in M and the positive real numbers given by the theorem. We
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refer to Chapters 4 and 6 of [12] for all the following assertions: first,
we have that

(Tie, 33136)2

d
(1.1) for any i,5 € {1,...,N}, i # j, -2 — 400 as e — 0.
Hielje

Then we have that for any i € {1,..., N},

n

. 5—1
i% Mz?g u&‘ (expxi’e (ll'LZ,E‘/'U)) =u (x)

in C2. (R™\S;) where
u(@) = (1+ anlz2)' "2

is a solution of Agu = u?"~1 in R™, ¢ the Euclidean metric, and

eXpl‘rL}e (xj,t?) 9 J # 1 S.t. wj,E - Bﬁiﬁ <9(2)> } .

S; = {lim
e—0 Lje

In this definition, i,(M) is the injectivity radius of M and we assume
that the limits exist, which is always the case after passing to a new
subsequence.

Note that, as a direct consequence of the above theorem associated
to standard elliptic theory, one gets that
liH(l) u. = ug in C2_ (M\S)
E—
where

(1.2) S={z;,ie{l,...,N}} withz; = lim ;..
e—0

As proved in Section 6.3 of [12], the estimate of the theorem may be
precised: let us define Sy € C° (M x M) by

1 ife=y
SO (xvy) = 9
(n —2)wp1dy (z,y)" " Go (x,y) fz#y

where Gy is the Green function of Ay + hg, ho as in (0.1). The fact that
Sy € C° (M x M) comes from standard property of the Green function.
We refer the reader to the appendix of [12] for estimates on Green’s
functions of linear elliptic operators on compact manifolds. We let (x.)
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be a sequence of points in M such that z. — g as € — 0. Then we
have the following asymptotic estimate on u. (z.) as € — 0:

N

(1.3)  ue(x:) = ug (x¢) (1 +o0 (1)) + Z(So (Ti,x0) + 0 (1))<p¢,E (z2)
i=1

where for i =1,..., N, ¢; . is the standard bubble

n—2

2
Mie
(1.4) i (z) = : .
v 12, + andg (7, 7)°

Thanks to (1.1) and (1.3), we also have that Struwe’s H?-description
holds with the bubbles of the theorem (see section 6.3 of [12]). Namely,
we have that

N

(15) U = uO"‘ZSOi,E + R,
i=1

with || Re || g2(ary — 0 as e — 0. In the following, we shall always consider
that the concentration points are ordered such that

(1.6) fie < pioe <o < e

As alast remark, note that standard elliptic theory leads thanks to (1.3)
to the following if ug = O:

N n—2
e T o Mie )2 —
(1.7) ;1_1)% pylte=an > (n—2)wp ; (il_r)r(l) HN,5> Go (75, .)
in C2_(M\S), S and 7; as in (1.2).

We derive now from (1.3) an asymptotic estimate (Claim 1 below)
we will often use in the sequel. We first set up some notations. We let
j€A{l,...,N} and we let (6.) be a sequence of positive real numbers
converging to 0 as ¢ — 0. We set

(1.8) A0 ={ie{l,...,N} st. dg(zic,2j) = O ()}

Note that j € A(7,d:). Fori € A(j,d:), we let

1
(1.9) z; = lim — exp;jls (xie)
E :

e—0
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where the limits are assumed to exist (this is always true after passing
to a subsequence). We set

(1.10) £(.6) = {201 € AG,5)).
We let also
-3
(1'11) Ae (j756)_< sup Ni,e) 5?72
1€A(4,0¢)
and
(112)  cGa) = D0 (lim A (. 00) pe (@50) ) So (@, 7))

ke A(j,0:)
+ ;ii%()\g (4, 8¢ ) uo (%))

and for k € A(j,9:),
_n=2 9y -1
(1.13) A (J,6e) = an * lim ()‘E (J, 0e) 56_12”13,5 ) :

e—0

In (1.12), we assume that the limits do exist but they may be equal to
+o00. By convention, we say that lim._ g ()\6 (7, 0¢) ug (@)) =0ifug = 0.
We prove the following:

Claim 1. Let j € {1,...,N} and let (§.) be a sequence of positive

real numbers converging to 0 as € — 0. We assume that the following
holds:

(H1) A (j,6.) 02 2 — +00 ase — 0.
(H2) C(j7 55) < +00.

Then, after passing to a subsequence, we have that
21_1)1[1) e (7, 0c) ue (eXij,e (5gz)> = H (2)

2
in C} .

(R™\X (5,0:)) where

Ak (7,0, .
HE= Y UG,
keA(j,6¢)

All the notations of this claim were introduced in (1.8)-(1.13).
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Proof. Let j € {1,...,N} and let (d:).( be a sequence of positive
real numbers converging to 0 as € — 0. Assume that assumptions
ig(M)

(H1) and (H2) of Claim 1 hold. We let 0 < § < -+~ and we set for

z € By (60:'), the Euclidean ball of center 0 and radius d6; ',

(1.14) we (2) = (5§_1u5 (exp%E ((55,2)) and
9= (2) = expy, g (0:2).

Since 0. — 0 as € — 0, we have that

(1.15) lim g. = ¢ in C2 . (R™).

E—
Note also that g. is controled on both sides by £ in the sense of bilinear
forms. Since u. verifies Equation (E.), we have that w. verifies

(1.16) Ay w + 62he (expxjys (6573)) we = w? 1

in By (55;1). We claim that for any R > 0, there exists C'r > 0 inde-
pendent of € such that

RN
(1.17) Ae (4,02) 0e 2 [l < Cr

Lee (Bo(R)\UkeAu,as)sz (%))

for all € > 0 where A (j,0.) is as defined in (1.8), z; is as in (1.9) and
e (J,0¢) is as in (1.11). In order to prove (1.17), we let R > 0 and
we let (z¢) be a sequence of points in By (R) \ Ugc a(j,s.) Bz, (). After
passing to a subsequence, we may assume that lim._g 2. = z5. We let
Te = exp,,, (0:2c) and we write thanks to (1.3) and (1.14) that

(1.18)
Ae (4, 0e) 651_57115 (2e) = Ae (J, 0) uo () (1 +o0 (1))
N
+ A (7.02) Y (S0 @, ) + 0(1)) e (ze) -
=1

Thanks to (1.12) and to assumption (H2), we have that, up to a subse-
quence,

(1.19) ;1_{% Ae (7, 0¢) uo (z) = ii_r)%()‘s (J; 0c ) uo (fj))

407
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where this limit is finite and is by convention equal to 0 if ug = 0. Let
ke A(j,0:). By (1.11), we have that

n_y
2 n_
<M§’E) < 0¢ 1>‘5 (J, 5&)71
13
which leads thanks to (H1) to p; . = 0(d:). For € > 0 small enough, we
1

o(
have thanks to (1.15) that dg (2c, zr,) > 550 so that

dg(z:tk,s) — 400
as € — 0. This leads with (1.4) to
. —n;2 , 2-1 “n
APl = |on™ +o()] A Go ks dy (e

= M (4,02) |20 — 26> " + 0 (1)

where A (j,0¢) is defined by (1.13) and is finite thanks to (1.11). Since
ke A(j,6:) and 6. — 0 as € — 0, we clearly have that T, = T; so that
So (Tk, ;) = 1. Thus we have obtained that

(1.20)
for any k € A(j,0¢) ,

gli% )\5 (.]7 55) (SO (Ekajj) +o (1))9016,6 (xa) = )‘k (]a 56) |Z0 - Zk|2_n .

Let now k & A (j,d:). Since dg (zj¢,x:) = O (0.) and dg(xﬂ'(»sii’x’m) 4o
as ¢ — 0, we have that

so that
lim Pk,e (ma)
e=0 Ppe (Tje)
Thus we obtain that for any k & A (3, d),

=1.

gli% Ae (]) 5&) Pk.e (xa) = ;1{)% Ae (]a 65) Pk.e (xj,a)

which does exist, after passing to a subsequence, and is finite thanks
o (H2). Combining (1.18) with (1.19), (1.20) and this last relation, we
get that

13

lim A, (j,6:) 82w (2) = H (20)

where H is as in Claim 1. In particular (1.17) is proved. Standard
elliptic theory permits then to conclude thanks to (1.14) — (1.17) that
Claim 1 holds. q.e.d.
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2. Estimating the distance between bubbles

For any j € {1,..., N}, we set

(2.1) Aj={i#j st pje=0 (1)}
and
(2.2)
s /vLj,E 2 3 =
73eq . . . . f =
Tje =

min {.min (Mj’E dg (Tie,2je)” + Mi,suj,s> ;Mj,s} if up # 0.
i€A; \ Mie

If A; =0 (which is possible only for j = N) and ug = 0, we let ;. =1

for all € > 0. Note that, thanks to (1.1),

(2.3) lim £ = 4o forall j €{1,...,N}.
e=0 e

The aim of this section is to get an estimate of r;. in terms of p;.. If
7je does not converge to 0 as € — 0, we say that (., 1) is an almost
isolated concentration point. We deal with almost isolated concentra-
tion points in Section 3. We treat in the following claim the case when
rje —0ase— 0

Claim 2. Ifn = 3, there ewists 69 > 0 such that liminf, g7, >
oo for all j € {1,...,N}. In other words, the concentration points
are isolated in dimension n = 3. Assume now that n > 4. Let j €
{1,...,N} be such thatrj. — 0 ase — 0. Then the following assertions

hold:

(i) After passing to a subsequence, we have that

n

. _9 1- —n=2 1
by %) (e, (729) =007 (i )

in C2 _(R™\X;) where

loc
Ej = {Zj,k‘7 ke BJ} U {0} ?
B = {k+#j, dg(zjec,xre) = O(rjc)} and
1
Zjk = lim— exp;js (xks) , k€ B;

e=07j
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and where A\
, _ Nk .
hi(2) = Z |z — zj k|72 T
keA;NB; I
with n_q
. Mke\?
Ajk = | lim
’ e—=0 ;e
and
_”T—Q - 7. 7)1 n—2 1_%
an Tep = ), So@ed) lim (1t ke (@)
keA;j\B;

: n—2 1*% =.
+lim (17205 o (7))

(ii) We have that

(10 @3) = C@)8, @)+ 0 (D) tn (- ) =24, 0

when n = 4 and that

(ho (T;) — C(n)Sy (T;) + 0 (1)) s "

2
rn 3 (=22 (0 — 1)
an, 8 (n _ 1) Wn—11; (0)
when n > 5. Here, C(n) = 4(7;;21) and a,, = m Moreover,
hj (O) >0

(iii) If ho (T;) > C(n)Sy (T;), we have that Vh; (0) = 0.
Proof. Let j € {1,...,N} be such that
(2.4) lim - = 0.

We want to apply Claim 1 to (j,7j.). We let B; be as in Claim 2 so
that B; U {j} = A(j,7je), A(j,7je) as in (1.8). We verify that the
assumptions of Claim 1 are satisfied by (j,7;.). First, by (2.4), rj. — 0
ase — 0. Let k € A;NB;. Then we have that dg (zj., zc) = O (1<) s0
that, using (1.1), (2.1) and (2.2), we obtain that puy. = O (pjc). Thus

(2.5) for any k € A; N By, pie = O (1) -
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If £ ¢ Aj, by the definition (2.1) of A;, we have that p. = o (pje).
Thus for any k € Bj, pre = O (pj,). This gives that there exists C > 0
such that

, nq g
(2.6) C <X (fyrje)p2e 12" <1
for all e > 0 where A (j,7;,) is defined by (1.11). By (2.3), we thus get
that

n

1
3 - 2 __
lim A (5, 7je) 15 * = +00

so that assumption (H1) of Claim 1 is satisfied. Let k & B;, k # j, that
is k € {1,..., N} such that

dg (The, Tje)

Tje

— 400 as e — 0.

We write thanks to (1.4) and (2.6) that

2
‘ o= " Mk e
(e () e (7)) 72 < 22 , |
] B Hie Mz,a + andg (Tje, xk,e)Z

If £ € Aj, we get then by (2.2) that A (j,7)¢) @re (zc) = O(1). If
k & Aj, then py . = o(pj.) and we write that

(e (Gy756) re ( ))425 < L e e
JrTie) Phe (L)) 772 < -
e\ Tje e\T)E an Hje dg (xkv’f’ xj’E)Q

=o0(1)

since k & Bj, k # j. If up # 0, then rj275 < pje by (2.2) so that (2.6)
gives that A; (j,7j¢) < 1. We have thus proved thanks to (1.12) that
assumption (H2) of Claim 1 holds. Applying Claim 1 to (j,7;c), we get
that assertion (i) of Claim 2 holds for j thanks to (2.5) and (2.6). In
order to compute ¢;, note that, as just proved, if k € A;, k & Bj, k # 7,

then r}fjujlgagokﬁ (je) — 0 as e — 0. We claim now that
(2.7) hj (0) > 0.

Let us prove this claim. If A; = 0, then r;. = 1 if ug = 0, a situation
which is excluded by (2.4). If ug #Z 0 and 7“]2-75 = U, we have that

n—2

¢j > an® ug () >0
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so that h; (0) > 0. Assume now that A; # () and that there exists

k € A; such that

r2_ = Hie
HEk.e

J,€
If k£ € Bj, then hj (0) > 0 since, by (2.1), >‘j7i > 0 for all 1 € .Aj N Bj. If
k ¢ Bj, we write thanks to (1.4) that

dg (I'j,s, xk,a)Q + Wjelbke-

2 2 2
o 1-n =) Mo + dg (T, Thye)
(7“1-1 2#' *Pke (xj,E)) = : > 1
he e M%,a + andg (e, xk,E)Q

so that h; (0) > 0 in this last case. Relation (2.7) is proved. Note that
(2.7) is the second part of assertion ii) for i = j.

Let us set
(2.8) Cj = {k‘ S Bj s.t. Zjk = 0}

where z;, is as in Claim 2. Let k € C;. If k & A;, then pp. = o (1)
and if k € Aj;, it follows from (1.1), (2.2) and (2.8) that pr. = o (1)c)
also. Thus

(2.9) pie =0 (pje) forall k € C;.
We let
HE,
(2.10) 57 ke = ,ngg (Ther i) + Bictiie
7,€

for k € C;. Note that, by (2.3), (2.8) and (2.9), we have that
(2.11) Sjke =o0(rje) forall k eC;j.

We let now D; be a subset of C; and (Ry,) keD; be a sequence of positive
real numbers such that

dg (xk,z-:y $k’,e)

(2.12)  for any k,k' € D;, k # K/, .
1K€

— 400 ase — 0

and such that

(2.13)  for any k£’ € C;, 3 a unique k € D; such that

. dg (Tke, Trr R . Sj k! R
hmsupM < =k and lim sup =25 < Tk
e—0 S5k, 1 e—0  Sjke 10
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We claim that there exists C' > 0 independent of € such that for any
k€ Dj,

Ry
(2.14) for any x € By, . (RkSjke) \Ba,. (4Sj,k,s> )
L
[Vuelg(z) < Cuks 3]1];; ue () < C,u,f’e Sikz :

The proof of this claim is based on Claim 1. We check that we can
apply Claim 1 to (k,s;jrc) for k € D;. First, by (2.4) and (2.11), it
is clear that sj,. — 0 as e — 0. Let i € A(k,sj.), that is i €
{1,...,N} such that dy (e, Te) = O (sjke). Since dg (Tie, xje) <
dg (Tic,xpe) +dg (The,je), we get thanks to (2.8) and (2 11) that i €
C;. By (2.13), we then have that s;;. = O(sjre). By (1.1), (2.9)
and (2.10), dg (zic,2ke) = O (Sjhe) = 0( (azjg,a:ka)). This leads
thanks to the definition (2.10) of s;; . and s 1 to ;e = O (pg,e). Thus
pie = O (pg,e) for all i € A(k,s; ). This gives the existence of some
C > 0 such that

21 9_
(2.15) C <A (k, Sj,k,s) :ukz,g Si,kz <1

where A (k,sj ) is defined by (1.11). This implies in particular that

1_n 2k- nT_Q d (.17 Tk )2 nT_Q
Ao (k')sj,k,e) i ki > C ] € >C M
Nk; £ Hk.eHje

so that Ac (K, sjk¢) slzg — +00 as € — 0 thanks to (1.1). This proves
that assumption (H1) of Claim 1 holds for (k, sj ). Leti & A (k,sj k),
that is ¢ € {1,..., N} such that

dg (Tie, Te)
Sjk.e

— 400 as e — 0.

In order to estimate (A: (k, Sjkc) @iz (Te)), we write thanks to (1.4)
and (2.15) that

2
2 Sjke i e
(216) (e (b sype) e (31.2)) 72 < 20 7 |
( ) e " ) ) Mk e /%2,5 +andg (l‘i7€’xk7€)2

We distinguish several cases. First, assume that ¢ € Cj. Then, by (2.12),

(2.13) and thanks to the fact that M — 400 as € — 0, we get
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that
dg (Tge, x;
(2.17) A (T i) — 400 as e — 0.
Sj7i75
This gives that
2 2 2
dg (xi,é‘u xk,s) _ dg (xk,sv xi,e) dg (551',57 xj,s) i Hije
/'ng,s 5?,1'75 Hielj.e e

— +oo0 ase — 0

thanks to (1.1). Thus (2.16) becomes in this case

Pk dg (xi,sy xk,s)

2 i 52.
(>‘€ (ka Sj,k:,a) Pie ("L‘kﬁ)) n—2 — () (” € J.k,e 2) .

We write now thanks to (2.10) that
HE.e

J?E

e £ 2555 (dy (i) + dy (@0, 03,)°) + st

so that we get that

2

()\5 (k, Sj7k75) ()072’5 (l‘k,e)) n—2
=0 (’U’Z’E> +0 (Mz,s dg (l'i,sal‘j,s)Q 4 Mie g e )

Hj.e Hj.e dg (-Ti,zsa xk,5>2 dg («Tz',ea xk,s)Q

| o2,
:o(’“) +o—2E )=o)
Hje dg (wi,saxk,s)

since i € C; and thanks to (2.9) and (2.17). Second, assume that i = j.
In this case, (2.16) becomes

) 2
e W+ dg (e, T e)
()‘z-: (K, Sjke) Pie (wk@)) S 2%6 E 2
Wi+ andg (Tjes Thye)

<n(n-—2).

Third, assume that ¢ ¢ C; and that ¢ € A;. Then we write with (2.16)
that

2

(Ae (k, Sjke) ie (The)) "2

d (ZE'E,l'kg)Q e
< | 293708 TRET 4 J
= , X d 2"
Hj.e Mi,& + an g9 (:L"L:E’ 'rk‘,E)
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Since i ¢ C; and i # j, we have by (2.8) that
dg (wic,2re) = (1+0(1))dg (wie, Tje) -

Since k € Cj, we also have that dy (xj.,xrc) = 0(rjc). Since i € Aj,
this leads with (2.1) and (2.2) to

2
/%2,5 +dg (Tje, Tie)

2
2 dg(2i,e,25,e)
Hie + n(n—2)

(A (K, 8jkc) i (The)) "2 = O =0(1).

At last, assume that i € C;, i € A; and ¢ # j. Since i € C; and @ # j,
we have as above that

dg (Tie, Tpe) = (1 +o (1))dg (Tie, Tje) -
Since ¢ € A;j, i # j, we know that p;. = o(uj.) so that, by (1.1),

dg(Ti,e,Tje)

2% — +00 as € — 0. Thus (2.16) becomes in this case

2

(Aa (k:, Sj,k,e) Pie (xk,e)) n=2
1, d j,€9 € 2 1,eMg,e
_0 Lg(w;,s:vk,)Q Lo Mietie
Hj.e dg (-%’,57 xj,z—:) dg (J;i,sa xj,e)
=o0(1)

since p1ie = o(pje) and ¢ € Cj, i # j, and thanks to (1.1). Thus we
have proved that

for any i € A(k,Sjke) s Ae (ky8jke) Pie (Tre) =O(1).

Assume that ug Z 0. Then we can write thanks to (2.10) and (2.15)
that

2 2
M bosip)is < ike o o (@othe)”
E ? ]7 75 —_ _— j7€
/’Lk,&‘ ,ulj,g

ri
= 0(/@‘,5) +o(l)=0(1)

using (2.2) and (2.8). Thus assumption (H2) of Claim 1 is verified by
(k,sjke). We can apply Claim 1. This proves (2.14) thanks to the
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choice of Ry, we made. Indeed, by (2.11), any i € A (k, sj ) belongs to
C; and by (2.13), we get then that

X (k‘,sj',k,g) C By <R5k> .

This clearly ends the proof of (2.14) thanks to (2.15).

We let now n : [0,+00[ — R be a smooth function verifying that
0<n<1l,n=1on [O,ﬂ and n =0 on [%,—Foo[. We set

(2.18) Oje = H <1 —n (dg(xke’)>> and vj. = 0jU..

keD; Riesjke
We claim that there exists C' > 0 independent of ¢ such that
(2.19) ’Uj@ S C(pj’g in ij’g ((5]'7’]'78)

where §; € R is fixed such that

(2.20) 5j < min{]zj,k], ke Bj\Cj, k # j}

N

It is possible to find such a d; thanks to (2.8). The proof of (2.19) is
based on (1.3) which gives that there exists C' > 0 independent of &
such that

[[uol] oo + Pk (T)
Pje ()

L(x)<0 1+

je () Pje ()

oy

for all z € By, (0jrjc). As well as rj. and d; have been chosen so that

ool , - 9 ) _
Pj.e (m) keC; Pi.e (JJ)

for all # € By, (0;7,) for some C' > 0 independent of € (see the proof
that the assumptions of Claim 1 hold for (j,7;.)), it is easily checked
that s . has been defined so that

Pke (z)

<C
Pj,e () —

for all x € M\ By, . (%sﬁk@). These two assertions, whose proofs are
left to the reader, imply (2.19).
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We set

(2.21) Aje :{(y, v,0) e M xR} xR s.t.

1 v 1 1
d 1,€9 S 'Euig §27_7§9§7
g (Zjey) < py, 2= e B 2}
and we let (yjc,vje,0j:) € Aj. be such that
2.22 J: ; o0 0) = i J: 0
( ) e (Yjes Vi, biie) (y,yf?f&j,s e (Y, v,0)
where
dy (y, . 2
B0 = [ 19 (0(B22) @ @400, av,
M T j,e g
with
n—2
(223 by (1) v 2
. L (z) = .
v V2 + andy (, y)2
We claim first that
(2.24) Jje Wje,Vje,0j) =0 ase — 0.

In order to prove (2.24), we first note that (z;., ft¢,0) € Aj. so that

Jj,E (yj»s’l/j»s’gj’E) S Jj’E (xjv‘?’/'Lj:E’O) °

‘We write now that

(e, -
Jje (Tjes pje,0) = /‘ ( ( 25, Z,E ))("Uj,e_@j,e))
7,

2
(Vje — @je)” dug

2
dvg
g

2 5
T I Ba; . (0m5,\Bu; (i)

+C/ |V (v — @j,g)‘i dvg

rj e)
where C' > 0 is some constant independent of €. Thanks to (2.3) and
(2.19), it is easily checked that

lim —— (Vje — ‘Pj,s)2 dvg =0

1
e—0 1"2 9j
jie / Bej (075,e)\Ba, (77“3',5)
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so that we obtain that

(2:25)  Jje (Yje Vie, Oic) = O (/B IV (vje = pse) d”g) :

;e (8575.e)
We write with (1.5) that
(2.26)

/ IV (vje — ‘Pjye)‘z dvg
(6575,¢)

<C V(056 = 1) i) |2 dog
Ba;. - (0575.¢)

+ CZ/ UMSOZ',E)’; dvg

i£] 1]5(6 T3, s)

+C IV (0cu0)| dvg +C IV (0 Re)2 dv.
BI]',E(&]'T]',E) sz75 (lsz]"E)

with [|Re||g2(as) — 0 as € — 0. We write that

/ 1V (0o Re) 2 doy
(0 Tj s)

-0 < / Vol R dvg>
;e (0575.e)
10 (/ VR0 ]Edvg>
2 (057j,e)
=0 (/ |Vaj,g|§ R? dvg> +o0(1)
Ba; (857j,¢)

since R. — 0 in HZ(M) as ¢ — 0. Thanks to (2.12) and (2.18), we have
that

/ IVoje \3]{2 dvg
Bo, (5

e (03T5.e)
2
/ RE dvg
kGD ke Backg RkS]ké‘

2
1 1 n
=0 X 2 Vol (Bfﬂk,s <QRij,k,s>> |1 [3-
-]’ ’6

kE'D]‘
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with Hoélder’s inequalities. By Sobolev’s inequalities, since R, — 0 in
H?(M) as e — 0, we finally obtain that

(2.27) / . )|V(aj,€R€)y§ dvg = o(1).
T Tj,e

In the same way, it is easily checked thanks to (2.12), (2.18) and to the
fact that we assumed (2.4) that

(2.28) / 1V (a5u0)|2 duy = o(1).
Bay (Gr1)

'j.e

Let now i € {1,...,N}, i # j. We write thanks to (2.12) and (2.18)
that

/ 1V (ajei0) ) du,
z;

2
(pz,e dUg
kGD ]kt’:‘ szg Rksjks \szs( Rksj,k,s)

+0 / r
zj,e 0375.¢)\Ukep; Bxk,s(%Rij,k,s)
2
¢ 1 (‘0175 dvg
sz’s wjrjﬁ)\uke’DJ' sz,a (ZRij,k,a)

2%
2
o] ey,
Ba; (8;7j,e)\UkeD; By, . (5 Risjk,e)

If i € C;, (1.1) and (2.10) give that SMJZ—’; — 400 as € — 0 so that, by
(2.12) and (2.13), we have that

1
3316 R/’sz U Bmks <4Rk8j7k75>

keD;

S —

for all R > 0 as soon as ¢ is small enough. Direct computations give
then that

/ (Il doy = o).
@) e (5jTj,E)\UkeDj By, o (ZRksj,k,s)
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If ¢ ¢ Cj, direct computations, distinguishing whether ¢ € A; or not,
give the same result thanks to (1.1), (2.1), (2.2) and (2.20). Thus we
have that for any i € {1,..., N}, i # j,
(2.29) / IV (05002 dvy = 0 (1).

Ba; (857j,¢)

At last, we write thanks to (2.12) and (2.18) that

/B o) V(05 = 1) je) |, v,
z; \0jTj,e

1
=0 w5 dv
k;j Sg’k’e sza(RT57 kE) e !
10 / Vs 2 dv
kgj sze(RQ SJ’V5> e !

By (1.1), (2.9) and (2.10), we have that

dg (The, Tje) 4o ase —0

Sjk.e
so that
2 2 dg (Tje, T 6)2 o
Pie =0 pi" |1+ ———5—— and
Hje
—n
_ndg (Tje, xp, )2 dg (Tje, Tk, )2
|V<,0j75320 Mjﬁn g J€2 e 14 % 362 e
Hje Hje

in By, . (%sjykﬁ) for all k € D;. Thus we have that

/B o) V(05 = 1) 05) | vy
z; e \05T5,e

Sjk,e 2 dg(xjaaxks)2 o
o3 ()7 (ot

kGDJ IUI']’F; j,E

n 2 2\ N
+0 Z <SJ}(€75> dg (xj,saxk,e) <1+ dg (xj,z-:Q»xk,a) )

2
rep,; \ Hie Hje Hje




FROM ONE BUBBLE TO SEVERAL BUBBLES

By (2.9) and (2.10), we have that for any k € D;,

Sike _, <dg (@i, W) +o(1).
Hje Hje

This easily leads to
2
/ IV((0je —1) pje) ’g dvg =o0(1).
Ba; (857j,¢)

Coming back to (2.26) with (2.27) — (2.29) and this last relation, we
obtain that

(2.30) lim IV (vj.e = 9j.2)|2 dvg = 0.

0B, (55m50)

Thanks to (2.25), this proves (2.24). Let us prove now that

. do (2 s
(2.31) lim@;. =0, lim Hie _ 1 and lim 292 Yie) (5.1 Yje)
e—0 e=0 Ve e—0 Wje

=0.

Note that, by the definition (2.21) of A;., all these limits exist after
passing to a subsequence. We write that

2
Tie (Yje: Ve bje) = / ‘V(Uj,s (v = (1 +052) %}e))‘ dug
M g

where

dg (Yje, -
77j75 = <g(],£)> and Q’Z)jvg = ¢yj157l’j15'

253‘7“]"5
Then we write that

(2.32)
Jj,s (yj,z-:a Vje, Hj,z-:) = ”V (nj,svj,a) ||% + (1 + ej,s)Z HV (nj,swj,s) H%

—2(1+46;c) /M(V (Mievie) » V (mese)) , dvg.
This leads in particular to

2
Jje (%,87 Vijes 93‘,5) > (HV (773}6“]',8) ||2 - (1 + 9]',5) ||V (ﬂj,a%'ﬁ) ||2) .

Thanks to (2.3), (2.19) and (2.30), it is easily checked by direct com-

putations that lim. o ||V (njcvjc)]l2 = Kn *. Independently, direct
computations give thanks to (2.3) and to the definition (2.21) of A;.
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that ||V (njcje) 2 — Kn_% as ¢ — 0. By (2.24), the above relation
then gives that 6;. — 0 as ¢ — 0. Coming back to (2.32), we then get
that

im [ (V(njevje) .V (0jeje)), dvg = Ky ?
e—0 M g

which leads in turn thanks to (2.19) and (2.30) to

lim y (V (Mjepie),V (Uj,e%‘,e))g dvg = Ky,

e—0

n
2

But this last relation is easily seen to be possible if and only if % —1
and % — 0 as € — 0. This ends the proof of (2.31).
7,€
Let 0 <0 < w We set for x € By ((57“]-_’51), the Euclidean ball of

center 0 and radius (51“]-_61,

(2.33) gje (@) =expy  g(rjez),

By (2.4), we know that
(2.34) lim g;. = ¢ in . (R).
E—
Note also that g; . is controled on both sides by the Euclidean metric in

the sense of bilinear forms. Since u. verifies Equation (E.), u;. verifies

) A e |
(2.35) Agj,s Uje + rj,shy,aum =Uje

in By (57?751) Independently, using (2.3), (2.31) and (2.33), one gets

since assertion (i) of Claim 2 holds for i = j, as proved above, that

li Tje %_1 7%72 1
(2.36) im | == Uje = n 22 + h; (2)

e=0 \Vje
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in CZ.(R™\X;) where ¥; and h; are as in Claim 2. By (2.20), we have
that

;N By (5]) = {0} .
At last, (2.19) together with (2.31) gives the existence of some C' > 0
such that for any € > 0,

(2.37) Bje (z) < Cibje in By (65)
where
n—2
2
~ VjeTje
w ‘7 T Js b
je () T anr T [P

We write
(2.38) NiTje = (L+0j2) njthje + wje

where w;. € C°(By (6;)) and

o)

We express (2.22). Differentiating J; . with respect to 6, we obtain that

(2.39) /B . (v (nj{ﬁj,a) ,ij@)gjs dv,, . = 0.
; ,

Differentiating J;. with respect to y, we get thanks to (2.36) and (2.38)
that

(2.40) / \Y n-a%’s Vw; dv,. . = O (”“)H
' Bo(8;) T ow )T e Tje

9j,e

for all ¢ = 1,...,n. At last, differentiating J;. with respect to v, we
obtain thanks to (2.39) that
(2.41)

S ey

/ Vo njlel” | 1+ an—5 s VWi e dvg; . = 0.
Bo(d5) Vj,e
9j.e

The aim is now to estimate fBO(5j) |ij75]3j _dvg, .. We write first thanks
to (2.38) and (2.39) that

/;O(éj) ‘Vw]75|g],5 dvg‘]@ - /';O(éj) (vw],E; v (UJUJ’E))g],E dvg],s

= / wjvaAgj,e (77]7[}/‘7,8) dvgj,s'
Bo(5)
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Writing thanks to (2.33), (2.35), (2.36) and (2.38) that

*

wjAg; - (Mj05e) = (j056)"

+0 (w995, [Vuiel,, )

. n—2
+ 0 (”LU]',€| |Agj7€5j75| Ujﬁ) + 0 ((W,e) )

Tje

2 ~
Wje — 15 hje (MjV)e) wie

~ ~ox_1| ox—1
JFO(‘UJ}E*%’,& ‘uj,a \wj,5|)

in By (d;), we get that

(2.42)

2
/ |ij7€|gj75 dvgj,s
Bo(85)

_ TV e d 2 hs . . d
= (n;).e) Wje QUg; . — T e de (MjVj.e) Wie Vgj,e
Bo(55) By (55)

J

+0 (/BO((Sj) |1Uj7€| |VO'j,g e ]Vujﬁ Gie dvgj,s>
. n—2
T 0 / |wj7‘5| ‘Agj,aajyg Uj e dvgj e + 0] <V]’8)
Bo(®5) ’ Tje

For any k € D;, we set

1 _ Ry, Ry
Bj,k‘,E - 7,7 eXpy]:}g <sz,5 (zsj’k’€> \sz,é‘ (48j7k7€>) :
J,€

Using (2.12), (2.14), (2.18), (2.33), Holder’s and Sobolev’s inequalities,
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we get that

/BO( ) |wj75‘ |vo-j75’gj7€ |vuj7€|gj75 dvgj,e

d;

7
= O Z ]76/ |wj75‘ ’vuj@’gj’s dvgj,s

S5 .
keD; “IkE I Bjne

z 1

5 Ni_
j : Tje k,e
= O n 1 / ‘wj75| dvgj,s
kep; Ike Sjke I Bike

S35
Tie Mie 251
=0 (> 444;5;4447HUU£H2*‘QHQL5(lgﬁkﬁ) 2
kEDj JR,E
pre \ 2
o[ (&) ) ivus,
keD; NT)E

In the same way, one also gets that

/ |w]75| }Agj,s&jﬁ‘ uj,E dvg],s
Bo ()

d;
pre \ 2!
—o( [ X ()" ) 1wl
keD; \Ike
and that
~ 2* 1|, 251
0-'7 ‘ u] € |w]75| dvgg €
BO@

||
/_\
7;
w
(‘)
\:
<
&£
o
o

since pige = 0(Sjke) by (2.9) and (2.10). At last, we write thanks to



426 O. DRUET

(0.1), (2.33), (2.37), Holder’s and Sobolev’s inequalities that

2 ~
Tj,e/ hje (NjVje) wie dug, .
Bo(45)

2% 1
o~ 2* 2*
Vw, |l P2 dv,,
Jell2 7,€ 9j,e
Bo(5;)

which leads with direct computations to

2 ~
Tie / hje (MjVje) W dvg, .
Bo(45)

d;

) n—2
:o(|ij75||§)+o<(:J’g> ) +0(V]37€).

J,€

_ 2
=0 Tie

Plugging these estimates into (2.42), we obtain that

(2.43) (14 o(1)) / Vw2, _du,,.
Bo(d5) ”

~ \2r-1
= /B (6 (V)" T wjedug, . + o0 (V3,)
0

)
» n—2 m 51
€ ,€
co((Z2) ol (X ()" ) imu.

Relations (2.24) and (2.38) give that

Jj7€ (ijs’ Vj,E’ Gj,E) = / |ij7€|3j,5 dvgjva - 0
Bo(85)
as € — 0 so that Holder’s and Sobolev’s inequalities permit us to write
with (2.38) that

(2.44) / (njaj,a)y_l Wye dvgj e
Bo(d;) ’

. 2*—1
=1+ 9]'75)2 ! / (Uﬂ/’j,s) Wy,e dvgj,s
Bo(d5)
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Direct computations give now thanks to (2.36) and to the Cartan ex-
pansion of the metric g;. around 0 that

Vw; .,V (0

/Bo(éj) ( 7,€ (Uﬂ/h,a))gj’
~ 2*—1

= / (ﬁﬂba‘,e) Wie dvg, .

Bo(;)
+0 |7, / |x|212]2.f;1 |wj | dvg, .
Bo(85)
U n—2
Vg dvgj,e> ‘o ((j) )

vo(i. [ |vi
Bo(65)

so that, using (2.39), Holder’s and Sobolev’s inequalities, we get that

~ 2*—1
/ (nj%‘,s) Wj,e AVg; o
Bo ()

2* 2%
2 7ox 1) -1
2 / <|$| e ) dvg, .
Bo(d5)
2
alvgj’E
9j,e

dvgjﬁ
€

=0 7“32-75 ||ij,&‘

N |=

+0 (2wl ([l
Bo(35)
n—2
+0 <V“> .
Tje
After simple computations, we finally obtain that

~ 2*—1
(2.45) / (njwj,a> Wi dvg; .
Bo(45)

—0 (('/”)TLQ) +0 (V) + o[ Vwiel3)-

,,’..776

Coming back to (2.43) with (2.44) and (2.45), we arrive thanks to (2.31)
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to

(2.46) (1+o(1))/ yvu;j,gg,sdvgjg
Bo(5)) " ’

-~ 2% _9 U n—2
= 2*—1/ 1 w?, dvg, .+ O <“)
( : Bo(5;) Gb%e) e Tje

21
2
+0 Z (“’“) IVwjcll2 | +o(3,)-

s
keD; \“Ike

Let us now consider the following eigenvalue problem:

259
Ay, Cie = Tie (77j'(/}j,5> Gie in By (05)

(2.47) Gie =0 on 9By (9)

~ 2*x -2 _n
/ (njwj,s) Ci,s(k,s dvgj,s = Ky 20
Bo(65)

with 7 <.-- < 7. <.... By the result of Appendix 1, we know that

(2.48) liH(l) Tie = 7; for all i € N*
e—
and that
(2.49) lim ‘V (C — ¢ ) ’ dvg. . =0 for all 1 € N*
e—0 Bo(55) ’ ’ 9j,e 9re

where

_ NE-l o
(2.50) G = (”5) G (”5 x)
Vj7£ V]78

with (¢;, 7;) the solutions of the following eigenvalue problem:

AgCi = Tiu2*—2€~i in R"”

/ u? 726, dvg = K;%&‘k-
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Thanks to the work of Bianchi-Egnell [3], we know that

(2.51) G=u, =1,

9
G=h— =2 1 fori=2,....n+1,
01

2 _n_
Goa2 = Anga | u— ————claPun=? | e = 2" — 1,
n(n — 2)
where Ao, ..., A\y12 are some positive real numbers and that
(2.52) Tnag > 25 — 1.

Let us now write that

n+2

Wje = Z QieGie + Rje
i=1
with
(2.53) o Imoey (Vs VGie)y, @V
. i, —
f30(5].) |VQ’,€’§J-,E dvgj,s
so that

/B (TR VG, dvy, =0

fori =1,...,n+ 2. In particular, we obtain thanks to (2.48) that

2.54 / VR; % dv,,.
(2:54) Bo(5j)’ ieclos M,
~ \2-2
> (Tnts +o(1)) / (Wj,e) Rj dvg,, -
Bo(4;)
We also have that
2.55) / Vw; |2 dv,, .
( BO(6j) ‘ J‘E’gg,s 93,

n+2
n

=K,? Y el + /

i=1 Bo(9;

s€

2
| VR;[2  du,
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thanks to (2.47). At last, we can write that

(2.56) /B y

We now estimate the a; .’s. We write thanks to (2.47), (2.49) and (2.53)
that

_n
Ky’ eQie = /
Bo(s

9j,e

It is then easily checked that

/BO(5j) (ij,e,v <Zi’6>>gj,s Aoy, = O ((2;)712)

for i = 1,...,n 4 2 thanks to (2.39), (2.40), (2.41), (2.50) and (2.51).
Thus we obtain that

n—2
y
o2, = of [y [3) + o (() ) -
€

Then (2.55) becomes

n—2
N
Vel + o (1) = o0 (() ) VR

Tje

and (2.56) becomes

~ 2*—2 9 ~ 2*—2 9
/ (njl/}jﬁ) Wi e dvgj,s = / (nﬂ/}j,&) Rj € dvg; e
Bo(d;) Bo(d5)

n—2
5
o[ Vuyellf) + o (() ) .
Tje
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Using (2.46), (2.52) and (2.54), we thus obtain that

(2.57)
Vi n—2 m n—2
2 _ J5€ 3 €
2_0((%) )+o<uj,s>+o > (L)
b ke’D] vy

We claim now that

n—2 n—2
V‘? Mk"7
(2.58) 83 =0 ((é:) > +olvie) +0 Z (Sj ki)
’ keD; 7

In order to prove this claim, we first note that

V5, v, = [ (Vunlduy,
/Bo(5j) T gge Bosy) e

J

||ij,€

2

+ (1 + 9j,5)2 /Bo(éj) ‘V (nj{[}/j7g> .

thanks to (2.38) and (2.39). Direct computations lead then with the
Cartan expansion of the metric g;. around 0 to

v (n;;,
L ¥ (5)
-~ 2 ) oo~
_ / V| dz+o 2. / 22 |V
Bo(d;) Bo(5)
Vs n—2
+O<<J’6) )
Tje
_n Vs n—2
= K’Vl 2 +O (‘7’8> +O(Vj,€)'
Tje

We thus get thanks to (2.31) and (2.57) that

, dvg, .
J2,€

2
dvg; .
9j,e

2
dm)

(2.59)
n—2
~ -z Vie
[ Vol o, K a0 0 (42)
BO((;J‘) ’ r.]7€

+0 Z(“’“’6>n2 +o(vje).

o
keD; N IkE
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Independently, using (2.33), (2.35) and (2.36), we have that
/ o IV,

~ 2% ~ 2
= / (n0je)” dug, . — 13, / hje (njUje)” dog,.
Bo(8;) Bo(8;)

i
n—2
, 5 , Vje
+0 </Bo(5j) Ve i |v0-]75’gj76 Uje dvgj,a> +0 ((Tj,s) )

+0 / A, G| u3 dv,,

<BO(5j)‘ 93, 35‘ J,€ 795,

+0 / ‘62 — 52w dv, .
< 30(5]) J:€ J,€ J:€ 93,

Following what we did to estimate the different terms of (2.42), we
deduce from this equation the following:

|V(77:l\]/’ )2- dU €
Bo(4;) Bo(d;)
U n—2 m n—2
wo(22) ol T ()
Tj7€ kIEDj sj,k:,e’;‘
Writing thanks to (2.38), Holder’s and Sobolev’s inequalities that

/ (nj’ﬁj,E)Q* dvgj,e
Bo(85)
* ~ 2%
=(1+ 93’,5)2 / (Uj¢j,€) dvgj,e
Bo(6;)

* 2% -1 AN
+ 2 (1 + 9]',5) (m%;) Wy.e dvgj’s
Bo(45)

J

12
He </Bo(6j) Vel dvgj,s)

and thanks to the Cartan expansion of the metric g; . around 0 that

~ 2% _n Vs n—2
/ (T]j?[)j’g) d’l)gj’E =K,2+0 ( J.75> +o (Vj,g) ,
Bo(85) Tje
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we get thanks to (2.31), (2.45) and (2.57) that

n ) n—2
[ e = (40,07 KaF 40 () o)
Bo(d5) ’ Tje

+o| Y (‘fk’5>n_2

S
kep; ' hke

Using (2.37), it is easily checked that
2 ~ 2 _
e / hje (105.2)" dvg, . = 0(vje).